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1 Introduction

Dealers in the US corporate bond market have reduced their inventories substantially since

October 20071. This coincided with the start of large write-downs on the balance sheets of

several banks (Citi, Merrill Lynch, UBS),2 whose dealer businesses had substantial market share

in liquidity provision in the US corporate bond market. In the financial press3 this reduction in

inventory has been attributed to a reduction in dealer risk appetite during the financial crisis of

2007-09. During that period insurance companies were net buyers of corporate bonds.4 In the

subsequent sovereign debt crisis, dealers again reduced their aggregate inventories of corporate

bonds. But Weill (2007) and Lagos, Rocheteau and Weill (2011) show that if dealers are risk-

neutral and customers become more risk averse in a crisis, dealers should “lean against the

wind” and stock up on risky assets to sell them back to customers at a profit, once customers’

risk tolerance has returned to pre-crisis levels. Though those models are applicable to other

crises and other markets, they were not designed for the US corporate bond market during the

financial crisis, nor for the subsequent sovereign debt crisis, when dealers reduced their aggregate

inventories, rather than increasing them. The data suggests that these crises affected dealers

more than their customers, and Randall (2015) shows that it was not just the absolute level

of dealer risk appetite, but also the level relative to their customers, which determined which

set of agents built or reduced inventory in that period. In that sense, customers took the role

of leaning against the wind in these crises in the corporate bond market. Since the dealers in

the customer-crisis models, and in other over-the-counter (OTC) trading models of Lagos and

Rocheteau (2009), and Duffie, Garleanu, Pedersen (2005, 2007), are risk neutral, the price at

which they trade with customers does not depend on their inventory positions, the riskiness of

the traded asset, nor the time-varying cost to the dealers of bearing inventory risk. But another

empirical stylized fact for the US corporate bond market is that prices and liquidity changed

dramatically during the financial crisis, with asymmetric effects for customer purchases and

sales. Figure 2 shows the starkness of this price asymmetry in the financial crisis: on average

customers who were prepared to buy from a dealer market which was looking to offload inventory

could buy at just a small markup to the inter-dealer price, but prices offered to customers who

were selling were marked down severely. Figure 3 also shows that trade size has decreased a

1See Figure 1, Choi and Shachar (2014), and “Digging into dealer inventories” (September 11th 2013, FT.com).
Though the extent of the deleveraging is hard to estimate, all these studies agree dealer inventories are lower than
their pre-crisis peak.

2See “Restoring Financial Stability: How to Repair a Failed System” (2009)
3e.g. “Slimmer bond inventories as dealers reduce risk”, November 8th, 2011 (FT.com)
4See Randall (2015).
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lot since the onset of the financial crisis. All this evidence is consistent with dealers bearing a

time-varying cost of holding inventory, which increases markedly in crisis periods.

Though there are already theoretical models highlighting the effects of costly dealer inventory

for anonymous trade in the equity markets, such as Stoll (1978) and Amihud and Mendelson

(1980), they do not incorporate the bargaining that plays out in OTC markets where agents’

identities are known when trade is negotiated. So they cannot explain the empirical fact that

larger trades tend to get better prices in the corporate bond market, as we see in Figure 4.

In this paper I develop a model which can capture the aggregate time series facts of the US

corporate bond market described above, and produce testable implications for liquidity and

dealer inventory in the cross-section at trade level, which are confirmed in Randall (2015).

Though the assumptions of the model are motivated by the corporate bond market, it can be

applied to any OTC market.

In my theoretical model, trading of a risky asset occurs in a hybrid market, consisting of

secondary trading in both a competitive inter-dealer market and in an OTC search market where

customers and dealers bargain over both price and quantity, and primary trading where dealers

can trade at issuance of the asset, collecting a payoff at maturity. I measure liquidity as the

dealers’ “markup”, which is defined as the difference between the price per unit at which they

trade with a customer, and the price at which the average hypothetical inter-dealer trade would

have occurred, had there been one at that time. The markup can be thought of as the retail

markup to the customer versus the wholesale inter-dealer price. This measure of liquidity is

related to the bid-ask spread, but the benchmark price is the inter-dealer price rather than the

midquote. The inter-dealer price is less arbitrary, and allows for markup asymmetry between

transactions to buy versus to sell, which Figure 2 shows can be substantial. It also allows us

to think of these prices and the markup as functions of the traded quantity, which, crucially,

is endogenous in my model. The dealer markup is the theoretical analogue to the empirical

“unique round trip” measures of Zitzewitz (2010) and Feldhutter (2012), which quantify liquidity

in the US corporate bond market. Those studies focus on “paired” customer-dealer trades:

ones that are accompanied by an inter-dealer trade within a few minutes, often for the exact

same quantity, as the pairing dealer immediately lays off the customer trade in the inter-dealer

market. The unique round-trip measure is the difference between the two prices in a paired

trade. In Zitzewitz (2010) only about one third of customer-dealer trades are paired with an

inter-dealer trade, though Randall (2015) shows this rate has increased more recently. My theory

models the complement of this set, the unpaired trades, which make up the majority of trading.
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I derive closed-form equilibrium expressions for customer-dealer prices, dealer markups, and

dealers’ optimal inventory. My theory emphasizes that it is dealers’ time-varying cost of holding

inventory, rather than inventory per se, that drives these relationships in dealer markets.

Dealers in my model are not formally risk averse, but “effectively risk averse” as in Adrian,

Etula, Shin (2010) and Etula (2013), with a time-varying cost of holding inventory making their

behavior observationally equivalent to those of risk averse agents, and the model analytically

tractable. It can rationalize why dealers reduced their inventories of US corporate bonds in the

financial crisis of 2007-09 and subsequent sovereign debt crisis, given an increase in their effective

risk aversion. This can be interpreted as an increase in risk aversion itself, or a tightening of a

Value-at-Risk constraint, or any increase in capital requirements or other opportunity costs of

holding inventory, such that dealers behave as if they are more averse to holding risky assets. The

flexibility in interpretation allows application to other OTC markets, beyond the US corporate

bond market. I show how even in the presence of inventory costs, dealers’ optimal inventory

positions are not generally zero, which is also what we observe empirically in Figure 1 and why a

static model would not suffice. Given the dynamic nature of the dealers’ problem, they consider

future trades with customers and other dealers, trading off the current price at which they can

trade versus expected future prices to determine whether to be long or short, and by how much.

All else equal, the size of their positions do, however, shrink as the cost of holding inventory

increases.

In the models of dynamic, OTC, search market trading of Duffie, Garleanu, Pedersen (2005,

2007), dealer inventory is restricted to 0 or 1 unit. However, in order to understand the re-

lationship between trade size and price, trade size must be non-trivial. Lagos and Rocheteau

(2009) weaken this restriction to allow dealers to hold positive inventory of any amount. Afonso

and Lagos (2015) model inter-dealer trading in the overnight federal funds market. Their model

allows dealers to have more flexible utility functions, but any aversion to holding inventory is

constant over time. Empirically, the time-variation in dealers’ corporate bond holdings, bid-ask

spread, and trade size suggest that time-varying aversion to holding inventory is an important

feature in at least that OTC market, which is why it is a key feature of my model. Unrestricted

trade size allows me to better understand the equilibrium relationship between price and trade

size in an OTC market. So in my model dealers’ choices of inventory position are unrestricted,

allowing them to be long or short any quantity. I employ a friction of “trading blackouts” –

that dealers can only trade at known, discrete points in time – as in Longstaff (2001, 2009)

and Garleanu (2008). This emphasizes the non-trivial periods of time at which dealers bear
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inventory risk for the majority of customer trades which are not immediately unwound in the

inter-dealer market. To the best of my knowledge, my model is the first dynamic trading model

of an OTC search market with both dealers and customers, where the dealers are averse to

holding inventory and trade size is non-trivial.

The model also gives theoretical intuition for the empirical fact that larger trades in the US

corporate bond market are generally associated with smaller markups, i.e. customer prices closer

the inter-dealer price. This is the reverse of the relationship between trade size and liquidity for

US equities which trade in limit order markets. In a limit order market, market orders which

exceed the depth of the best quote walk up or down the limit order book, and so larger trades,

unless split up over time, are mechanically associated with worse volume-weighted average prices.

Those equity limit order markets are anonymous, but OTC markets are not. An explanation

for the disparity in the liquidity-size relationship between the two markets is this difference

in transparency around counterparties. Larger trades are associated with larger customers,

who have higher bargaining power because dealers value the large volume of their anticipated

future business. For small and medium-sized trades this bargaining power effect dominates the

dealers’ inventory cost effect, which is why for these size trades there is a generally negative

relationship between markup and trade size. In my model too, all else equal, higher bargaining

power leads to smaller markups. But it also produces the novel prediction that, controlling

for customer bargaining power, larger trades are associated with larger markups, particularly

when inventory costs are high. This is supported by Figure 4, which shows that for the largest

trades, where bargaining power is likely to be roughly similar amongst institutional customers,

the relationship between liquidity and trade size is reversed, and larger trades are associated

with higher markups.

The goal of this paper is to produce an equilibrium model which can match the aggregate

time series facts in the US corporate bond market. But my model gives a precise structural

equilibrium relationship between dealers’ inventory costs, markups, trade size, and customer

bargaining power, which can be tested in the cross-section at trade level. In Randall (2015) the

following predictions of these relationships are shown to hold true in the US corporate bond

market: (1) Dealers reduced their inventory of high yield bonds more when their inventory costs

increased relative to their customers’, but reduced their inventory of investment grade bonds

less, suggesting a flight to quality; (2) Markups increased when dealers’ inventory costs went

up; (3) This effect was generally stronger for high yield bonds than investment grades bonds,

consistent with the theory that both aggregate and bond-specific risk drives the dealers’ implicit
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and explicit costs of holding inventory; (4) This effect was also stronger for customers with lower

bargaining power, with a strikingly monotonic relationship across bargaining power groups in

bond-level regression results; (5) Conditioning on customer bargaining power, this effect was

more pronounced for larger trades.

I show that dealers’ time-varying costs of holding inventory, and bargaining between dealers

and customers over price and quantity, are both necessary to capture the aggregate stylized

time-series facts of the US corporate bond market in the last several years. The model also

allows me to make new, nuanced transaction-level predictions in the cross-section, for all OTC

markets. These predictions are shown to hold in the US corporate bond market.

Section 2 describes the model. Section 3 describes testable hypotheses from the model, and

empirical evidence. Section 4 concludes. Proofs are relegated to the Appendix.

2 The model

In this section I solve a dynamic equilibrium model of trading in a hybrid market, where there

is secondary trading in a competitive inter-dealer market, between customers and dealers in

an OTC search market, and, at issuance, between dealers and the issuer of the asset. I derive

expressions for the prices and quantities at which customers and dealers trade, dealers’ optimal

inventory, and a measure of liquidity: the dealers’ “markup” which is defined as the difference

between the price per unit at which they trade with customers, and the price at which dealers

would trade in a hypothetical inter-dealer market had it occurred.

2.1 The economy

Time is discrete, and runs forever. There is a risk-free asset paying the dealers interest at a

gross rate R each period. At any point in time there is a single risky asset, with a known finite

maturity. Upon maturity, the holders of the bond receive a payoff, and a new risky asset is

issued. There are a continuum of customers and dealers. Customers are risk neutral, trade

only once at birth, and consume all their wealth one period later. Dealers are averse to holding

inventory of the risky asset, and infinitely-lived. Each period they receive interest on their cash

holdings, pay an inventory cost on their risky asset position, and may or may not get to trade

with at most one5 agent: a customer, another dealer, or the issuer.

5Though not explicitly modeled, a paired trade, where the dealer trades in both customer-dealer and inter-dealer
market simultaneaously, can be thought of as an unexpected endowment of cash to the pairing dealer, but no change
in their inventory, while the other dealer gets an unexpected change in their cash and inventory positions. The
dealers’ cash reserves do not affect prices or quantities traded. Though the pairing dealer’s inventory is unaffected,
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I denote the current state of the economy at time t as st, whose value changes just after

each round of trading according to a Markov process. I denote the history of states since the

last issuance of the risky asset as st. The time-line is displayed in Figure 5.

2.2 The dealers

There is a continuum of dealers of mass 1 with holdings of (cash, risky asset units) = ($dt , a
d
t )

when entering time t. $dt includes interest accrued from the period (t− 1, t], which accumulates

at gross rate R per period, and is paid at time t. Each dealer is risk-neutral over her cash-flows,

which include trading revenues, interest on cash, inventory costs, and payoffs at the assets’

maturity. But the inventory costs make her “effectively risk averse” as in e.g. Etula (2013).

That is, though formally she is risk neutral in her cash flows, she behaves as if she were risk

averse. This inventory cost device makes the solution analytically tractable, while still capturing

the dealers’ time-varying aversion to holding inventory.

At time t = ...,−1, 0, 1, ... each dealer receives interest on her cash position, and pays in-

ventory costs f(st).(a
d
t )

2 on her risky asset position, where the function f(.) is taken as ex-

ogenous and strictly positive. The holding cost is quadratic in dealer inventory as in Mahanti,

Nashikkar, Subrahmanyam (2008). Its convexity allows bounded solutions for trade size and

inventory holdings, and the quadratic form yields a linear relationship between dealers’ markups

and their inventory holdings. If f(.) were proportional to the variance per unit of the next price

of the risky asset, then the inventory cost could be interpreted as a Value-at-Risk constraint.

But since f(.) is exogenous, and price variance is endogenous, this is a loose interpretation.

Nonetheless, the inventory cost captures the same effect. Since customers are risk neutral, this

effective risk aversion can be thought of as relating to the dealers in an absolute sense, or rel-

ative to customers: as f(.) increases, the aversion of dealers to hold inventory increases, while

the aversion of customers, who do not pay this cost, is unchanged. Since the dealers’ role is to

manage the asynchronous arrival of customer orders, they cannot diversify their portfolios to

the same extent that a customer can. Also the customers are the ones who ultimately want to

hold the inventory for an extended period. In the US corporate bond market, bonds are often

held by long-term investors, such as insurance companies and pension funds, looking to match

the duration of their long-term liabilities with long-horizon assets, collecting regular coupons to

pay out to their stakeholders. This motivates the relative inventory cost in the model, with the

dealers less willing to hold inventory than their customers.

aggregate dealer inventory changes by the size of the trade.
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Though there is a continuum of dealers, there are a number of distinct dealer types, denoted

ND, of equal measure, identified by their inventories. At time t...,−1, 0, 1, ... there are rounds of

trading. Either a proportion of the dealers trade in the inter-dealer market, or a proportion trade

with customers, or there is no trading, or the asset matures and a new one is issued. The dealers

who trade in each round are chosen randomly and without replacement from the population of

dealers. Draws are independent across rounds. Dealers of the same type are always drawn

together: if one dealer of type k trades in the inter-dealer (customer-dealer) market, then all

dealers of type k trade in the inter-dealer (customer-dealer) market. With probability π̃i, there

is inter-dealer trading, but only amongst a proportion πi
π̃i

of the dealers, so that each dealer

trades in the inter-dealer market with ex ante probability πi. Dealer type k buys quantity

qik(st) units of the risky asset from the inter-dealer market at average price per unit pi(st). The

inter-dealer market is perfectly competitive, so it does not depend on the quantity traded, and

there is one price for all dealers, which is why it is not subsripted by k. The justification for

assuming a competitive inter-dealer market is discussed in section 2.5.1. With probability π̃c,

there is customer-dealer trading, but only amongst a proportion πc
π̃c

of the dealers, so that each

dealer trades in the customer-dealer market with ex ante probability πc. Trade is with customer

type j with probability πcj , so the probability of trading with any customer can be written as

πc ≡
∑
j π

c
j . The distinction between customer types is discussed in section 2.3. The customers

who trade are drawn uniformly and without replacement from the population of customers.

Dealer type k buys quantity qck(st) units of the risky asset at price per unit pck(st), where both

the price and quantity are negotiated through Nash bargaining. With probability 1 − π̃i − π̃c

there is no trade by any dealer at time t. With probability 1−πi−πc there is no trade by dealer

type k = 1, ..., ND at time t, and dealers just receive interest on their cash and pay inventory

costs on the risky asset. At known times Tn (n = ...,−1, 0, 1, ...), the risky asset matures, all

dealers receive payoff V issuer
Tn

for each unit they hold, and a new risky asset is issued, with dealer

type k buying quantity qissuerk (sTn) at price per unit pissuer(sTn). The price only depends on

the state at the time of issuance, not on any prior states, not on the quantity bought or sold,

and the subscript k is dropped since every dealer is offered the same price. This ensures that

prices and quantities of inter-dealer and customer-dealer trades only depend on a finite history

of states, since the time of issuance, rather than an infinite one. The dealers’ problem essentially

resets when each risky asset matures.

The quantities qik(st), q
c
k(st), and qissuerk (sTn) represent the signed quantity: positive if the

dealer buys, and negative if she sells. For ease of notation I drop the dealers’ k subscripts where
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we are only considering a single dealer’s optmization problem. Henceforth, I denote ft, p
i
t, q

i
t,

pct , q
c
t , p

issuer
t , qissuert as shorthand for f(st), p

i(st), q
i(st), p

c(st), q
c(st), p

issuer(st), q
issuer(st),

respectively.

2.2.1 The dealers’ problem

Each dealer maximizes the present value of her cash-flows, and so her value function at time t

is given by:

V dt ($dt , a
d
t , st) = max

{qiτ ,qissuer
τ ,pcτ ,q

c
τ}

∞
τ=t

Et

 ∞∑
u=0

δu

$dt+u
(
1−R−1

)︸ ︷︷ ︸
receive interest

− pt+uqt+u︸ ︷︷ ︸
trade

− ft+u.(adt+u)2︸ ︷︷ ︸
inventory cost

+ adTnVTn1{t+u∈{Tn}n}︸ ︷︷ ︸
maturity


 (1)

subject to (pcτ , q
c
τ ) being the solution to Nash bargaining between dealer and customer, and

the budget constraints that the dealer could be facing, described below. Here δ ∈ (0, 1) is

the impatience parameter, and p and q are the price and quantity, respectively, of a trade

with the dealers, a customer, or the issuer. $dτ includes accrued interest received by the dealer

at time τ . The dealer’s pre-interest cash holding was thus R−1$dτ , so the interest received is

$dτ − R−1$dτ = $dτ
(
1−R−1

)
. The value function can also be written as a function of the other

dealers’ current inventories and the current state st, instead of the history of states st. Each

round, the possible situations are: (1) no trade, (2) trade in the inter-dealer market, or with a

customer, and (3) maturity and reissuance. The budget constraints are given by:

1. no trade at time τ :

$dτ+1 = R

$dτ − fτ .(a
d
τ )2︸ ︷︷ ︸

inventory cost

 (2)

adτ+1 = adτ (3)

2. trade in the inter-dealer market or with a customer at time τ :

$dτ+1 = R

$dτ − fτ .(a
d
τ )2︸ ︷︷ ︸

inventory cost

− pτqτ︸︷︷︸
trade

 (4)

adτ+1 = adτ + qτ (5)
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where (p, q) ∈
{

(pcτ , q
c
τ ), (piτ , q

i
τ )
}

;

3. maturity and reissuance at time τ :

$dτ+1 = R

$dτ − fτ .(a
d
τ )2︸ ︷︷ ︸

inventory cost

+ adτV
issuer
τ︸ ︷︷ ︸

maturity

− pissuerτ qissuerτ︸ ︷︷ ︸
re-issuance

 (6)

adτ+1 = qissuerτ (7)

When there is no trade at time τ , the dealer pays the cost for their inventory of risky assets, and

receives interest on their cash holding. After receiving the interest and paying the holding cost,

the dealer is left with $dτ − fτ .(adτ )2 in her cash account, which earns gross interest at gross rate

R by time τ+1. When there is a trade at time τ , whether with a customer, dealer, or the issuer,

the dealer buys qτ units of the asset at price per unit pτ . Thus the dealer’s cash outflow pτqτ

is also deducted from the dealer’s cash holding at τ . At maturity the dealer receives V issuer
τ for

each unit she holds, and can buy a new issue at price per-unit pissuerτ , so her additional cashflow

is adτV
issuer
τ − pissuerτ qissuer.

In the appendix, I show that if δR < 1, the dealer’s value function takes the following general

form at time τ :

V dτ ($dτ , a
d
τ , sτ ) = γ$(sτ )$dτ + γa(sτ )adτ + γaa(sτ ).(adτ )2 + γ(sτ ) (8)

for some functions γ$(sτ ), γa(sτ ), γaa(sτ ), and γ(sτ ). I conjecture that the value function takes

this form since it is a similar form to that of the dealer’s per-period utility function: linear in

her cash holding and quadratic in her risky asset position. In the appendix I verify that if the

value function takes this form at some point in time, then by backwards induction on time, it

takes that form at all prior periods.

2.3 The customers

There are a continuum of risk-neutral customers, of different types. Customer type j is defined

by his conditional expected valuation of the asset, V
cj
t ≡ E

j
t [Vt+1], bargaining power ηj ∈ [0, 1],

and interest rate R
cj
t ≡ Rcj (st). They all have discount rate δc. They trade at most once, at

birth, with a dealer6, where the price and quantity are determined by Nash bargaining. Because

they are risk-neutral, it follows that the price and quantity they negotiate do not depend on their

holdings of either the risk-free or risky asset. They consume all their wealth one period later.

6Direct trade between 2 customers is extremely rare in the US corporate bond market.
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Heterogeneity in customer bargaining power and valuation allows me to capture the empirical

fact in the US corporate bond market that at the same point in time different customer-dealer

trades may occur at different prices and quantities. There is anecdotal evidence from industry

professionals that different customers receive different prices based on their importance to the

dealer, with customers anticipated to give a lot of future business to dealers rewarded with

better prices. This is why heterogeneity in customer bargaining power is a feature of my model.

Given that there are sometimes customer-dealer trades both to buy and sell, at the same time,

for the same price, allowing for differences in opinion in customer valuation is also necessary.

Without heterogeneity in customer interest rates, an outcome of Nash bargaining would be

that customer bargaining power would not affect trade size, so smaller customers with lower

bargaining power and tighter budget constraints would trade the same size as larger customers.

But if lower customer bargaining power is associated with more adverse interest rates (higher

when borrowing, lower when saving), a positive relationship between trade size and customer

bargaining power can be established.

2.4 Customer-dealer trade

When a customer and dealer meet they bargain over both the price and quantity, maximizing

the Nash product:

max
pct ,q

c
t

[customer gain from trade]η × [dealer gain from trade]1−η (9)

where η is the relative bargaining power of the customer, and 1 − η is that of the dealer. The

customer’s gain from trade is the utility they get from trading qct units of the risky asset with

the dealer at average price pct , over and above the utility from not trading at all. The dealer’s

gain from trade is their value function if they trade qct units of the risky asset with the customer

at price per unit pct , over and above their value function if they did not trade at all.

2.4.1 Customer’s gain from trade with a dealer

Consider a customer whose conditional expected valuation of the risky asset is V ct per unit, and

whose interest rate is Rct . For a customer-dealer trade at time t, if a dealer buys qct units of the

asset from that customer, at price per unit qct , I show in the appendix that the customer’s gain

from trade is given by:

Customer’s gain from trade = δcRctq
c
t

(
pct − Ṽ ct

)
(10)
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where Ṽ ct ≡ V ct /Rct is the customer’s expected valuation of the asset, discounted back to time t.

The gain does not depend on the customer’s pre-trade holdings in either cash or the risky asset,

because he is risk-neutral. All he cares about is the difference between his discounted valuation

and the price at which he can trade with the dealer, i.e. his marginal gain for each unit traded.

This is scaled up by the quantity traded, and discounted. Fixing the price per unit, he would

want to trade an unbounded amount: buying as much as possible if his valuation is above the

dealer’s quoted price, and selling otherwise. But the convexity of the dealers’ holding cost make

this unappealing to the dealer, and bounds the agreed quantity to a finite amount.

2.4.2 Dealer’s gain from trade with a customer

Let qct denote the optimal quantity the dealer would buy if she meets a customer at time t.

Let qit+u+1 and qct+u+1 denote the optimal quantity the dealer would buy if she trades in the

inter-dealer market or with a customer at time t + u + 1, respectively, assuming her last trade

was buying qct at time t. If a dealer enters the trade with inventory adt , I show in the appendix

that her gain from trade from buying qct units at price per unit pct(a
d
t , q

c
t ), versus not trading,

can be decomposed as follows:

1. buy qct today at price per unit pct , with a cash-flow of −pctqct ;

2. pay per-period inventory costs of f.(adt +qct )
2 instead of f.(adt )

2 every period until the next

trade;

3. buy qit+u units instead of qit+u + qct units at time t + u, if the next trade is at time t + u

and is in the inter-dealer market;

4. buy qct+u units instead of qct+u + qct units at time t + u, if the next trade is at time t + u

and is with a customer;

5. receive V issuer
T per unit on adt + qct units instead of adt units at maturity time T , if there is

no trade before time T .

(3) and (4) follow since I will show that the dealer’s post-trade inventory position does not

depend on her pre-trade inventory. The total gain from trade is the sum each of these 5 pieces,

multiplied by the probability they occur, and discounted back to time t. The probability that

the dealer doesn’t trade is 1−πi−πc each period. The probability that the next trade after time

t is in the inter-dealer market, and is at time t+ u is (1− πi − πc)u−1πi. The probability that

the next trade after time t is with a customer of type j, and is at time t+u is (1−πi−πc)u−1πcj .

The probability that there is no trade until maturity at time T is (1− πi − πc)T−t−1. Putting
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these pieces together, I show in the appendix that her gain from trade is given by:

(1 + δRγ$)

 −pctqct︸ ︷︷ ︸
(1) buy qct units from

time-t customer

−δ

(adt+q
c
t )

2−(adt )
2︷ ︸︸ ︷(

2adt + qct

)
qct

T−t−1∑
u=0

(δ(1− πi − πc))u Et[ft+u+1]︸ ︷︷ ︸
(2) discounted inventory costs on adt + qct units instead

of adt , until next expected trade

+δ

T−t−2∑
u=0

(δ(1− πi − πc))u
(
πiEt[p

i
t+u+1]

(
−qit+u+1 − (−(qit+u+1 + qct ))

)

+
∑
j

πcjEt

−qcjt+u+1.p
cj
t+u+1

(
adt + qct , q

cj
t+u+1

)
︸ ︷︷ ︸

trade at t and t + u + 1

−
(
−
(
qct + q

cj
t+u+1

)
.pct+u+1

(
adt , q

c
t + q

cj
t+u+1

))
︸ ︷︷ ︸

trade at t + u + 1 only




︸ ︷︷ ︸
(3) and (4): Buy qt+u+1 units from time-(t+ u+ 1) counterparty, instead of qt+u+1 + qct . The

counterparty is a dealer with probability πi, and customer j with probability πcj .

+ (δ(1− πi − πc))T−t−1 δ
(

(adt + qct )− adt
)
Et
[
V issuer
T

]
︸ ︷︷ ︸

(5) Cash in adt units instead of (adt + qct ) at maturity time T , if dealer

doesn’t meet a counterparty in the previous T − t− 1 rounds of trading.


(11)

The sum of these 5 pieces is multiplied by 1+δRγ$t+1. The ‘1’ represents the cash-flow at time t.

In the appendix I show that γ$t is constant, which is why I drop the t subscript in the expression

above. δRγ$t+1 represents the opportunity cost of not investing that one unit of cash-flow in the

cash account: it would accrue interest at rate R, be worth γ$t+1 next period, but be discounted

back at rate δ.

2.4.3 Customer-dealer price

An outcome of Nash bargaining, which I verify in the appendix, is that the customer-dealer

price can be expressed as a weighted average of the dealer’s and customer’s valuations, where

the weights are given by their relative bargaining power:

pct = ηV dt + (1− η)Ṽ ct (12)

where η is the customer’s relative bargaining power, 1 − η the dealer’s, V dt the dealer’s time-t

valuation of the risky asset, and Ṽ ct the customer’s. The customer’s valuation is exogenous; it is

their discounted reservation value for the asset. The dealer’s valuation is endogenous, and can

be characterized similarly as their break-even price; it is the customer-dealer price such that

13



the dealer’s gain from trade is zero. Using the expression for the dealer’s gain from trade, the

customer-dealer price per unit can thus be written recursively:

pct = η

 −δ
(
2adt + qct

) T−t−1∑
u=0

(δ(1− πi − πc))uEt[ft+u+1]︸ ︷︷ ︸
inventory costs on adt + qct units instead of adt , until next trade

+δ

T−t−2∑
u=0

(δ(1− πi − πc))u ×
πiEt[pit+u+1] +

∑
j

πcjEt

−qcjt+u+1.p
cj
t+u+1

(
q
cj
t+u+1

)
︸ ︷︷ ︸

trade at t and t + u + 1

−
(
−
(
qct + q

cj
t+u+1

)
.pct+u+1

(
qct + q

cj
t+u+1

))
︸ ︷︷ ︸

trade at t + u + 1 only

 /qct


︸ ︷︷ ︸
buy qt+u+1 units from time-(t+ u+ 1) counterparty, instead of qt+u+1 + qct . The counterparty is

a dealer with probability πi, and customer j with probability πcj

+ (δ(1− πi − πc))T−t−1 δ
(
(adt + qct )− adt

)
Et
[
V issuer
T

]︸ ︷︷ ︸
cash in adt units instead of (adt + qct ) from issuer at time T , if dealer

doesn’t meet a counterparty in the previous T − t− 1 rounds of trading


+ (1− η)Ṽ ct (13)

There are two ways that inventory affects the price at which dealers trade with customers: firstly

it affects the expected inventory cost until the next trade; secondly it affects the price of the

next trade if it is with a customer, as it affects the dealer’s bargaining position at that trade.

Theorem 2.1. The per-unit customer-dealer price, whether the dealer is buying from, or selling

to, a customer, can be written as:

pct = Ṽ ct + ηδqct

T−t−1∑
u=0

(δπ̃)
u
Et[ft+u+1] (14)

where π̃ ≡ 1− πi −
∑
j π

c
j(1− ηj).

The proof is given in the appendix. We see that the customer-dealer price can be bench-

marked to the customer’s discounted valuation, but will usually deviate from it. The direction

of the deviation depends solely on whether the customer is buying or selling, i.e. the sign of

qct , since the other parameters are positive. If qct is positive, i.e. the dealer is buying from a

customer, then the price per unit increases in the customer’s bargaining power, dealers’ expected

inventory costs, and absolute trade size. If qct is negative, i.e. the dealer is selling to a customer,

then the price per unit decreases in the customer’s bargaining power, dealers’ expected inven-
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tory costs, and absolute trade size. The larger the trade size, the further the price is from the

customer’s valuation, as the dealers’ total gain is scaled up by a larger quantity, so they are

willing to accept a worse price per unit. If the customer’s bargaining power is zero, then the

dealer gets all the gain from trade, the customer none, and the customer-dealer price is equal to

the customer’s valuation, V ct . The higher the customer’s bargaining power is, the more the price

moves away from their reservation value, and the greater their gain from trade. The higher the

dealer’s inventory costs are, the worse the dealer’s bargaining position, so the more the price

moves away from the customer’s reservation value, and the greater the gain the dealer gives to

the customer. This expression for pct − Ṽ ct , the difference between the price per unit at which

a customer can transact, and their discounted valuation, is one theoretical measure of liquidity.

But in this paper I will use the inter-dealer price, rather than the customer’s valuation, as the

benchmark for the customer-dealer price. This will help to test the model empirically, as the

customer valuation is never observable, whereas the inter-dealer price is observed, at least at

some points in time.

2.4.4 Customer-dealer quantity

Theorem 2.2. Each dealer’s inventory position after trade with a customer, is given by:

ad,ct+1 ≡ adt + qct (15)

=
δEt

[∑T−t−2
u=0 (δπ̃)

u
(
πip

i
t+u+1 +

∑
j π

c
j(1− ηj)V

cj
t+u+1

)
+ (δπ̃)

T−t−1
V issuer
T

]
− Ṽ ct

2δ
∑T−t−1
u=0 (δπ̃)

u
Et [ft+u+1]

The proof is given in the appendix. Since the dealers have identical preferences, they all

choose to trade to the same position, regardless of the inventory, adt , they have when they arrive

to the trade. From the customer’s gain from trade, we know that all he cares about is the

difference between his discounted valuation and the price at which he can currently trade with

the dealer. Fixing the price per unit, he would want to trade an unbounded amount: buying

as much as possible if his valuation is above the dealer’s quoted price, and selling otherwise.

But the convexity of the dealer’s inventory cost bounds the agreed quantity to a finite amount.

Fixing prices and valuations, the larger the expected inventory cost, the smaller the dealer’s

post-trade inventory position. Pre-trade inventory of one trade is post-trade inventory of the

previous one. So when inventory costs are higher, both pre- and post-trade inventory will be

smaller. Since trade size is the difference between pre- and post-trade inventory, larger inventory

costs is associated with smaller trade size. The dealer is not a myopic market-maker who targets
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zero inventory to minimize her immediate inventory costs. Instead, fixing inventory costs, she

holds a more positive inventory if future expected inter-dealer prices or customer valuations

are high relative to the valuation of the customer with whom she is currently trading. Since

customer-dealer prices are a weighted average of customer and dealer valuations, high future

customer valuations correspond to high future customer-dealer prices, and the dealer can profit

from stocking up now relatively cheaply, and selling off later at a higher price. Similarly, if the

current customer has a high enough valuation, the dealer sells to him knowing she expects to be

able to profit from unwinding the position at the next trade by buying back relatively cheaply.

If all the customers have the same interest rates, then a feature inherited from Nash bargaining

is that the quantity traded, and thus also the the dealer’s post-trade position, do not depend on

the customers’ bargaining power. If customers with lower bargaining power suffer worse interest

rates, i.e. higher when buying and borrowing, and lower when selling and saving, then they will

trade in smaller size. In this way smaller customers would trade in smaller size, and then trade

size and post-trade inventory would depend on customers’ bargaining power.

Figure 6 shows the price-quantity regions where there are gains from trade for the dealer

and customer, the equilibrium total price (quantity × price/unit) and quantity at which the

dealer and customer will transact, and how the total gain from trade is split between them,

given their relative bargaining powers. The solid and dashed lines represent the indifference

curves for the dealer and customer, respectively. The customer’s indifference curve is linear

since he is risk neutral. The dealer’s indifference curve is quadratic due to her inventory costs

being quadratic in her risky asset holding position. If there is no trade, i.e. qct = 0, then neither

the dealer nor customer gains from trade, which is why both indifference curves pass through

the origin. There are 4 scenarios depending on the dealer and customer types, which affect the

location and slopes of the indifference curves. The region below (above) the solid (dashed) line

represents the region where the dealer (customer) has a gain from trade. The intersection of

these regions, where there are gains from trade to both dealer and customer, is shaded gray.

A feature of Nash bargaining is that the quantity maximizes the total surplus of the customer

and dealer. The black dot is plotted at the coordinates of the optimal quantity and total price.

The length of the arrows relate to the gains from trade to the customer and dealer. The price

is a weighted average of the customer’s and dealer’s valuations, with the weights given by their

relative bargaining power. In this example the customer’s relative bargaining power, η, is 1
3 .
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2.5 Inter-dealer trade

In the model there is no information asymmetry between dealers, and so risk-sharing drives

trading in the inter-dealer market. Reiss and Werner (1998) show that this is the primary

motivation for inter-dealer trade in London equity markets. In my model dealers choose to

perfectly risk-share in the inter-dealer market: they trade in such a way that their inventory

positions after inter-dealer trading are all equal, regardless of the distribution of their inventories

before, because they have identical preferences.

Theorem 2.3. Each dealer’s inventory position after trading in the inter-dealer market is given

by:

ad,it+1 ≡ adt + qit (16)

=
δEt

[∑T−t−2
u=0 (δπ̃)

u
(
πip

i
t+u+1 +

∑
j π

c
j(1− ηj)V

cj
t+u+1

)
+ (δπ̃)

T−t−1
V issuer
T

]
− pit

2δ
∑T−t−1
u=0 (δπ̃)

u
Et [ft+u+1]

The proof is given in the appendix. This expression is very similar to the dealer’s optimal

holding after trade with a customer, but the benchmark which determines the trade direction

and size is the current inter-dealer price instead of the current customer valuation. If the inter-

dealer price is relatively low, the dealer will stock up on inventory, expecting to sell it in future

customer-dealer or inter-dealer markets, or to the issuer, at a higher price. Similarly, if the

inter-dealer price is relatively high, the dealer will sell in the inter-dealer market, to buy back

relatively cheaply in the future.

Market-clearing in the inter-dealer market implies that net trading amongst the dealers must

be zero. This gives a recursion for the inter-dealer price, pit, which can be solved by backwards

induction on trade time, starting from the last trade before the maturity of the asset. Let

ād,it denote the mean inventory of dealers who trade in the inter-dealer market at time t. The

recursion is given by:

pit = δEt

T−t−2∑
u=0

(δπ̃)
u

πipit+u+1 +
∑
j

πcj(1− ηj)V
cj
t+u+1

+ (δπ̃)
T−t−1

V issuer
T


−2δ

ād,it
πi/π̃i

T−t−1∑
u=0

(δπ̃)
u
Et [ft+u+1] (17)

Given the dynamic nature of the dealer’s optimization problem, the current inter-dealer price

is increasing in expected future inter-dealer prices, expected future customer valuations, and

the expected value of the asset at maturity. The larger the average inventory of dealers trading
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in the inter-dealer market, ād,it , is, the greater the supply of the asset, and the lower the price.

This is particularly pronounced when dealers’ expected inventory costs are high.

Similarly to the customer-dealer price, we can gain intuition for this recursion, by re-writing

it. The inter-dealer price per unit is the dealer’s gain from trade from buying in the inter-dealer

market, differentiated with respective to the number of units bought. If a dealer enters the

inter-dealer market with inventory adt , I show in the appendix that the change in her value

function from buying a marginal unit at price per unit pit, can be decomposed intuitively as

follows:

1. buy qit units today at price per unit pit, with a cash-flow of −pitqit;

2. pay per-period inventory costs of f.(adt +qit)
2 instead of f.(adt )

2 every period until the next

trade;

3. buy qit+u units instead of qit+u + qit units at time t + u, if the next trade is at time t + u

and is in the inter-dealer market;

4. buy qct+u units instead of qct+u + qit units at time t + u, if the next trade is at time t + u

and is with a customer;

5. receive V issuer
T per unit on adt + qit units instead of adt units at maturity time T , if there is

no trade before time T .

This means the inter-dealer price can be written as:

pit(ā
d,i
t ) =

∂

∂qit

−δ(ād,it )2
T−t−1∑
u=0

(δ(1− πi − πc))uEt[ft+u+1]︸ ︷︷ ︸
discounted inventory costs until next expected trade

+

T−t−2∑
u=0

(δ(1− πi − πc))u(πiEt[p
i
t+u+1]((qit+u+1 + qit)− qit+u+1)

+
∑
j

πcj((q
i
t + qct+u+1).p

cj
t+u+1(adt , q

i
t + qct+u+1)− qct+u+1.p

cj
t+u+1(adt + qit, q

c
t+u+1)))︸ ︷︷ ︸

sell qt+u+1 units instead of qt+u+1 + qit at next trade. Next counterparty is dealer with

probability πi and customer j with probability πcj .

+ (δ(1− πi − πc))T−t−1Et
[
V issuer
T

] ((
adt + qit

)
− adt

)]︸ ︷︷ ︸
cash in adt units instead of adt + qit from issuer at time T , if dealer

doesn’t meet a counterparty in the previous T − t− 1 rounds of trading

(18)

18



2.5.1 Competitiveness of the inter-dealer market

While in reality the inter-dealer market is not perfectly competitive, as in the model,

the empirical evidence seems to suggest that it is much more competitive than the

customer-dealer market. Figure 5 of Randall (2015) shows the percentage deviation of

prices from their mean within a bond issue and within a minute, for customer-dealer

and inter-dealer trades, averaged across all paired trades. Price dispersion within a

small interval of time is a measure of competitiveness of those prices: the higher the

dispersion, the less competitive prices are. By considering trades only within a minute

of each other, this is unlikely to represent time series price volatility, but instead the

dispersion of prices between different agents at a point in time. Also plotted is the

ratio of the price dispersions: customer-dealer versus inter-dealer. This ratio is greater

than one for all but one month in the sample, typically around 2, and much higher

more recently. That paper also applies a Kalman filter to the unpaired trade prices,

which leads to a similar conclusion about customer-dealer versus inter-dealer prices,

suggesting that the inter-dealer market is typically much more competitive than the

customer-dealer market.

2.6 Issuance

The dealer’s inventory position at time T1, just after the maturity of one risky asset

and issuance of a new one, is given by:

adT1+1 = qissuerT1
(19)

=
δET1

[∑T2−T1−2
u=0 (δπ̃)u

(
πip

i
T1+u+1 +

∑
j π

c
j (1− ηj)V

cj
T1+u+1

)
+ (δπ̃)T2−T1−1 V issuer

T2

]
− pissuerT1

2δ
∑T2−T1−1
u=0 (δπ̃)u ET1

[
fT1+u+1

]

where T2 is the time of maturity of the new asset which is issued at time T1. This gives

the initial distribution of dealer inventories at the start of the new risky asset’s life.

Since the issuance price depends only on the current state, and not any of the previous

ones, the amount the dealers trade at issuance depends only on prices, valuations, and

inventory costs during the life of that risky asset and not any of those objects for past

or future issuances: i.e. maturity of the asset resets the dealers’ problem. We see that
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the dealers’ optimal inventory position is very similar to that after customer-dealer or

inter-dealer trading, but the benchmark price is now the new issuance price, pissuer
T1

,

rather than the customer valuation or inter-dealer price.

2.7 Dealer markup

I define the dealer’s per-unit markup when trading with a customer to be the difference

between the customer-dealer price and expected inter-dealer price, specifically:

markupt ≡


E[pit]− pct if the dealer buys from a customer at time t

pct − E[pit] if the dealer sells to a customer at time t

If transactions only happen at quoted prices, then the bid-ask spread would be pc,askt −

pc,bidt , where pc,askt is the ask price offered when the customer is buying from the dealer,

and pc,bidt is the bid price when the customer is selling to her. So the markup splits

the bid-ask spread into two, possibly unequal, pieces. The benchmark price is not the

arbitrary bid-ask midpoint, but the inter-dealer price. We can interpret the markup as

the mark-to-market profit of the dealers. It is the analytical analogue to the “unique

round trip” measure from Feldhutter (2012), which focuses on paired trades, when there

are customer-dealer and inter-dealer trades within a few minutes. In my model only

one of these types of trade can occur at each point in time, i.e. I am focusing on the

unpaired trades, when dealers have to bear some change in their inventory costs for a

non-trivial period of time. But by allowing the possibility of either customer-dealer or

inter-dealer trading at each point in time in my model, I can compute the theoretical

inter-dealer price at the time of a customer-dealer trade. In the appendix I show that
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the markup when the dealer is buying from a customer is given by:

E[pit]− pct = δ




2ad,ct + qct︸ ︷︷ ︸

dealer’s inventory

cost gain per unit

− 2. (ad,it + qit)︸ ︷︷ ︸
average inventory of dealers in

hypothetical inter-dealer market


+ (1− η)qct


×
T−t−1∑
u=0

(δπ̃)uEt[ft+u+1] (20)

The expression for the markup when the dealer is selling is the negative of this expres-

sion. Whether the dealer is buying or selling, customers with higher bargaining power,

η, get lower markups. When a dealer has inventory above the inter-dealer mean, the

markup when she is buying is increasing in expected inventory costs, and the markup

when she is selling is decreasing in those costs. The greater her inventory is above the

mean, the stronger this effect. Thus the model can generate the markup asymmetry

for buys versus sells we see during the financial crisis in Figure 2, as long as the dealers

trading with customers were mostly those with above-average inventory. Given their

increased incentive to offload inventory at that time, it is reasonable to believe that

they were the more active dealers.

Whether the dealer trades with a customer or dealer at time t, at time t + 1 her

optimization problem looks the same, though she may enter time t + 1 with different

cash and risky asset positions. So there is a lot of cancelation between customer-dealer

and inter-dealer prices at time t, and from the expression for the markup, we see that

the residual which doesn’t cancel is comprised of three pieces. One piece is proportional

to ad,it +qit, and comes from the expression for the inter-dealer price. Since net trading in

the inter-dealer market is zero, all dealers trade to the same position in the inter-dealer

market, ād,it ≡ ad,it + qit. So from equation (17) we see that the inter-dealer price, and

therefore the markup when the dealer is buying, is decreasing in the average inventory

of the dealers trading. The other two pieces come from the expression for customer-

dealer price. If there’s no trade in the time interval (t, t+ u+ 1), then the difference in

time-(t+u+ 1) inventory costs of buying qct units of the risky assets from the customer

21



versus not trading is ((ad,ct + qct )
2 − (ad,ct )2)ft+u+1 = (2ad,ct + qct )q

c
tft+u+1. Dividing this

by qct gives the per-unit inventory cost gain, (2ad,ct + qct )ft+u+1. The remaining piece,

proportional to (1− η)qct shows that the markup is higher, whether a buy or sell, when

customer’s bargaining power, η, is lower since the customer-dealer price is then less

favorable to the customer, as we see from equation (14).

2.8 Finitely-lived dealers

In the previous subsections I assumed that the dealers are infinitely-lived. I also solve

a model where the dealers live only until the maturity of the asset. For the sake of

brevity, the proofs are omitted, but are very similar to the infinitely-lived case given

in the appendix. The expressions for prices and quantities are very similar to those

when dealers are infinitely-lived. The only difference is the coefficient on the dealer’s

cash position in the dealer’s value function, γ$(st). When dealers are infinitely lived,

γ$,inf (st) = 1−R−1

1−δR , and when dealers are finitely lived, γ$,fin(st) = (1−R−1)(1−(δR)T−t+1)
1−δR .

Figure 7 shows how this coefficient evolves in both cases, where dealers are finitely and

infinitely lived. In that example I look at periods up to 1,000 units of time before the

maturity of the bond, dealers earn interest at 5% per year on their cash position, and

the discount factor, δ, is 0.99 per year. When dealers are infinitely lived, this coefficient

is constant: a dollar held by the dealers today or a dollar held by them tomorrow will

produce the same infinite stream of interest payments going forward. However, when

dealers are finitely-lived, though γ$(st) remains deterministic, it is no longer constant,

and decreases monotonically as the dealers’ death approaches: a dollar today will earn

more interest payments than a dollar tomorrow. Consequently, this non-constant value

to cash holdings is reflected in prices and quantities. Earlier cash-flows are weighted

more heavily than in the infinitely-lived case. Dealers’ post-trade inventories are de-

termined by a trade-off between the current price and expected future ones, as they

manage their portfolios intertemporally. Their positions weigh more heavily on the cur-

rent customer valuation for customer-dealer trades and on the current inter-dealer price

for inter-dealer trades, for finitely-lived dealers than infinitely-lived ones. The further

the trade is from the dealers’ death, the closer the expressions for prices and quanti-

ties for the finitely-lived case are to the infinitely-lived ones. The dealers’ post-trade

holdings, when they are finitely lived, are given by:

adt+1 = adt + qt = (21)

δEt[
∑T−t−2
u=0 (δπ̃)u(1 + δRγ$

t+u+1)(πip
i
t+u+1 +

∑
j π

c
j (1 − ηj)V

cj
t+u+1) + (δπ̃)T−t−1V issuer

T ] − Vt(1 + δRγ$
t+1)

2δ
∑T−t−1
u=0 (δπ̃)u(1 + δRγ$

t+u+1)Et[ft+u+1]
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where Vt denotes the customer’s discounted valuation Ṽ c
t for a customer-dealer trade,

and the inter-dealer price pit for an inter-dealer trade. The markup when a dealer is

buying becomes:

markupbuy
t = Et[p

i
t]− pct = δ

(
2ad,ct − 2(ad,it + qit) + (2− η)qct

)
×
T−t−1∑
u=0

(δπ̃)u
1 + δRγ$

t+u+1

1 + δRγ$
t+1

Et[ft+u+1] (22)

We see that this expression is very similar to the case when dealers are infinitely lived.

The only difference is that more weight is put on expected inventory costs in the near

future than far future.

3 Empirical Predictions and Evidence

The structural relationships derived earlier allow me to make precise empirical predic-

tions for dealer markups and inventory positions. The model predicts that:

(H1) The higher the dealers’ expected inventory costs, the lower the volume they buy

and the more they sell, particularly for more risky assets.

(H2) The higher the level of dealer inventory, and the cost of that inventory, the greater

the markup will be when the dealer is buying, and the lower the markup when the

dealer is selling. These effects should be stronger when expected inventory costs

are higher; either because the expected time to trade is longer, or the per-period

cost is higher.

(H3) The higher the dealers’ expected inventory costs, the lower will be trade size.

(H4) Fixing bargaining power, the markup is increasing in the product of trade size and

expected inventory costs, for both buys and sells.

(H5) The higher the customer’s bargaining power is, the less the markup is increasing

in that product, for both buys and sells.
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Figures 1 - 4 show the aggregate stylized time-series patterns for the US corporate

bond market in the last several years. Figures 2 - 4 are constructed using an enhanced

version of TRACE, a data-set of US corporate bond transactions, cleaned using the

methodology of Dick-Nielsen (2014). Markups are computed using the methodology of

Randall (2015). Figure 1 supports hypothesis (H1) by showing how dealers reduced

their overall inventory of corporate securities in the financial crisis of 2007-09 using

primary dealer inventory data from the Federal Reserve Bank of New York. Choi and

Shachar (2014) and “Digging into dealer inventories” (September 11th 2013, FT.com)

suggest that the extent of the deleveraging in the corporate bond market may be lower,

since the New York Fed data includes corporate securities other than corporate bonds,

but all these studies agree dealer inventories are much lower than their pre-crisis peak.

Figure 2 supports hypothesis (H2) by showing that in the financial crisis, when dealers

had relatively high inventory and were selling, for unpaired customer-dealer trades the

median markup when the dealer was buying increased, and the median markup when

the dealer was selling decreased. Figure 3 supports hypothesis (H3) by showing that the

mean trade size has decreased since the start of the financial crisis, in the inter-dealer

market and when dealers were both buying from, and selling to. customers. Figure 4

relates to hypotheses (H4) and (H5), showing the relationship between the markup and

trade size. For large trades, in excess of $1 million notional value, where customers are

large institutions and so bargaining power is likely to be similar, markups increase in

trade size. For small and medium sized trades, markups tend to decrease with trade

size, with larger trades associated with higher bargaining power.

In Randall (2015) predictions (H1), (H4), and (H5) are tested in the cross-section of

the US corporate bond market in 2004 - 2010. Prediction (H2) is not tested due to lack of

data on individual dealer inventory. Credit ratings are used as a measure of inventory

costs for individual bonds. Two measures for aggregate dealers’ inventory costs are

used: the LIBOR-OIS spread which measures dealers’ funding liquidity, and the ratio

of conditional equity return variance for dealers versus customers, which proxies for

their relative ability and appetite to bear inventory risk. Bargaining power is proxied

by splitting into trade size buckets, with larger trades more likely to be transacted by
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more important customers with more bargaining power, and then the effect of trade

size is analyzed within those buckets. There is strong statistical support for predictions

(H1), (H4), and (H5). A one standard deviation increase in dealers’ inventory costs was

associated with: an increase of 41% in net selling of high yield bonds and a decrease in

net selling of 38% of investment grade ones; a 7.1% increase in markups for unpaired

trades in high yield bonds, and a 5.7% increase for investment grade bonds, for a trade

of $100,000. For paired trades, where inventory risk should not matter, the effects from

inventory costs were much less significant. In the financial crisis inventory costs were

dramatically higher than average, so these effects were much larger.

4 Conclusion

My structural model for trading in an OTC search market allows me to show how

dealers’ inventory costs impact liquidity provision and dealers’ optimal inventory posi-

tions. It rationalizes the most prominent stylized time-series facts for the US corporate

bond market in recent years, with dealers’ inventory levels, trade size, and transaction

cost asymmetry (buys versus sells) all correlated with dealers’ time-varying aversion to

retaining inventory for significant periods of time. In addition, Randall (2015) shows

that my model correctly predicts that, controlling for customer bargaining power, when

inventory costs are high enough, the generally negative relationship between dealer

markups and trade size can be reversed, and realigned with the relationship in equity

markets. As predicted, this effect is stronger for both riskier bonds and trades asso-

ciated with customers with lower bargaining power. Without a structural equilibrium

model, where trade size is endogenous, customers and dealers bargain over both price

and quantity, dealers bear a time-varying aversion to holding inventory, and dealers are

long-lived, these relationships would be harder to identify empirically and to interpret.

The US corporate bond market was a natural place for the predictions of my model

to be tested empirically, given that my modeling choices were informed by the styl-

ized time-series facts of that market, and the availability of a comprehensive set of

transaction level data. But my model can also be tested in other OTC markets. The
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Financial Industry Regulatory Authority (FINRA) has also constructed a database of

transactions for structured product markets: Asset-Backed Securities, Collateralized

Mortgage Obligations, Mortgage-Backed Securities and To Be Announced Securities,

whose liquidity has been studied by Friewald, Jankowitsch, and Subrahmanyam (2012).

Municipal bond and swaps markets are other natural testing grounds.

Understanding the effect of inventory inventory costs is particularly relevant in the

current regulatory environment. The Volcker Rule, part of the Dodd-Frank Act, will

restrict commercial banks from proprietary trading. Many of the major corporate bond

dealers are subsidiaries of commercial banks, and will thus be affected. The Financial

Stability Oversight Council has proposed that proprietary trading may be identified

by the regulators as monitoring (a) the ratio of daily turnover of assets to the banks’

inventory; and (b) the ratio of customer-initiated trades to dealer-initiated trades, rela-

tive to their past trading behavior, other trading desks within the industry, and hedge

funds. Banks which hold positions which are too large for too long are more likely to

be cited for speculation, and would find it harder to argue these positions were purely

for market-making. So going forward a component of dealers’ cost of holding inventory

is likely to be the risk of breaching this and other regulations. Though these may be

effective in limiting opportunities for the dealing arms of banks to speculate, and thus

protect depositors, they also restrict dealers’ ability to make a market in infrequently

traded corporate bonds and other illiquid markets. Understanding this mechanism, and

given the feedback from reduced secondary market liquidity to increased cost of capital

in the primary market, informs the policy debate.
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Appendix A Proofs

Appendix A.1 Value function conjecture

Assume the value function takes the following form, at each time t:

V d
t+1($dt+1, a

d
t+1, st+1) = γ$

t+1$dt+1 + γat+1a
d
t+1 + γaat+1(adt+1)2 + γt+1st+1 (1)

where γ$
t ≡ γ$(st), γ

a
t ≡ γa(st), γaat ≡ γaa(st), and γt ≡ γ(st). We proceed by backwards induction on trade time, starting at the time of maturity and

re-issuance of the risky asset.

Appendix A.1.1 Maturity and re-issuance

At time T the asset matures, and all dealers receive payoff V issuer
T from the issuer for each unit they hold. The asset is reissued, and dealers can buy

unrestricted quantity qissuer
T at price per unit pissuer

T , which depends only on the state at time T . She arrives at time T with adT units of the risky asset,

and $dT in cash which includes interest accumulated for the period (T − 1, T ], which is paid at T . At time T her value function is given by:

V d
T ($dT , a

d
T , sT ) = max

qissuerT

$dT (1−R−1)︸ ︷︷ ︸
receive interest

− fT (adT )2︸ ︷︷ ︸
inventory cost

+ adTV
issuer
T︸ ︷︷ ︸

maturity

− pissuer
T qissuer

T︸ ︷︷ ︸
re-issuance

+ δET

V d
T+1

R
$dT − fT (adT )2︸ ︷︷ ︸

inventory cost

+ adTV
issuer
T︸ ︷︷ ︸

maturity

− pissuer
T qissuer

T︸ ︷︷ ︸
re-issuance

 , qissuer
T , sT+1



 (2)
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The first order condition with respect to qissuer
T yields the dealer’s holding at time T :

adT+1 = qissuer
T =

pissuer
T

(
1 + δRET [γ$

T+1]
)
− δET

[
γaT+1

]
2δET

[
γaaT+1

] (3)

The second order condition with respect to qissuer
T confirms this is a maximum as long as ET

[
γaaT+1

]
< 0. I will later show that it is. Plugging this

optimal quantity back in to the value function:

V d
T ($dT , a

d
T , sT ) =

(
1−R−1 + δRET

[
γ$
T+1

])
︸ ︷︷ ︸

γ$T

$dT + V issuer
T

(
1 + δRET [γ$

T+1]
)

︸ ︷︷ ︸
γaT

adT −
(

1 + δRET [γ$
T+1]

)
fT︸ ︷︷ ︸

γaaT

(adT )2

+ qissuer
T

δqissuer
T ET

[
γaaT+1

]
+ δET

[
γaT+1

]
−
(

1 + δRET

[
γ$
T+1

])
pissuer
T︸ ︷︷ ︸

−2δqissuerT ET [γaaT+1]

+ δET [γT+1]

︸ ︷︷ ︸
γT=δ

(
ET [γT+1]−(qissuerT )

2
ET [γaaT+1]

)

(4)

Appendix A.1.2 Inter-dealer trade

At each trade time t = ...,−1, 0, 1, ... some dealers can access the inter-dealer market, buying quantity qit at price pit. The inter-dealer market is assumed

to be perfectly competitive, and so the dealer takes the price as given. She arrives at time t with adt units of the risky asset, and $dt in cash which

includes interest accumulated for the period (t− 1, t], which is paid at t. At time t her value function is given by:

V d
t ($dt , a

d
t , st) = max

qit

$dt (1−R−1)︸ ︷︷ ︸
receive interest

− ft(a
d
t )

2︸ ︷︷ ︸
inventory cost

− pitq
i
t︸︷︷︸

inter-dealer trade

+δEt

V d
t+1

R
$dt − ft(a

d
t )

2︸ ︷︷ ︸
inventory cost

− pitqit︸︷︷︸
trade

 , adt + qit, st+1



 (5)
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The first order condition with respect to qit yields the dealer’s holding after inter-dealer trading at time t:

ad,it+1 ≡ a
d
t + qit =

pit

(
1 + δREt[γ

$
t+1]

)
− δEt

[
γat+1

]
2δEdt

[
γaat+1

] (6)

The second order condition with respect to qit confirms this is a maximum as long as Edt
[
γaat+1

]
< 0. I will later show that it is. Plugging this optimal

quantity back in to the value function:

V d
t ($dt , a

d
t , st)

= $dt (1−R−1)︸ ︷︷ ︸
interest

− ft(a
d
t )

2︸ ︷︷ ︸
inventory cost

− pit(adt+1 − adt )︸ ︷︷ ︸
trade

+δEt

R
$dt − ft(a

d
t )

2︸ ︷︷ ︸
inventory cost

− pit(adt+1 − adt )︸ ︷︷ ︸
trade

 γ$
t+1 + adt+1γ

a
t+1 + (adt+1)2γaat+1 + γt+1

 (7)

= (1−R−1 + δREt

[
γ$
t+1

]
)︸ ︷︷ ︸

γ$,it

$dt + pit(1 + δREt[γ
$
t+1])︸ ︷︷ ︸

γa,it

adt −(1 + δREt[γ
$
t+1])ft︸ ︷︷ ︸

γaa,it

(adt )
2

+ adt+1

δadt+1Et
[
γaat+1

]
+ δEt

[
γat+1

]
− (1 + δREt

[
γ$
t+1

]
)pit︸ ︷︷ ︸

−2δadt+1Et[γaat+1]

+ δEt [γt+1]

︸ ︷︷ ︸
γit=δ

(
Et[γt+1]−(adt+1)

2
Et[γaat+1]

)

(8)
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Appendix A.1.3 Customer-dealer trade

The dealer trades with customer j at each trade time with probability πcj . We can think of this probability as the joint probability of the dealer and

customer meeting, and there being a gain from trade.

The dealer’s gain from trade

Suppose a dealer meets a customer at time t. The dealer’s value function7 if she buys optimal quantity qct at average price per unit pct is given by:

Ṽ d
t

(
$dt , a

d
t , st, q

c
t

)
= $dt (1−R−1)︸ ︷︷ ︸

receive interest

− ft(a
d
t )

2︸ ︷︷ ︸
inventory cost

− pctq
c
t︸︷︷︸

customer trade

+δEt

V d
t+1

R
$dt − ft(a

d
t )

2︸ ︷︷ ︸
inventory cost

− pctqct︸︷︷︸
trade

 , adt + qct , st+1


 (9)

The gain from the dealer buying quantity qct at price pct as opposed to not trading (i.e. qct = 0) is given by:

Dealer’s gain from trade = Ṽ d
t

(
$dt , a

d
t , st, q

c
t

)
− Ṽ d

t

(
$dt , a

d
t , st, 0

)
(10)

= qctEt

[
δγat+1 + δ

(
2adt + qct

)
γaat+1−

(
1 + δRγ$

t+1

)
pct

]
(11)

The customer’s gain from trade

There are a continuum of customers who live for one unit of time, and trade only at birth. Consider one customer with an endowment of ($cash,

risky asset units) = ($ct , a
c
t) entering trade at time t. He is risk-neutral, with utility over post-trade wealth Wt+1 given by uc(Wt+1) = δcEt[Wt+1] =

δc
(
$ct+1 + act+1V

c
t

)
, where V c

t is the expected payoff to the customer of one unit of the risky asset. His interest rate is Rct . His gain from selling qct units

7I denote it Ṽ dt ($, a, s, q) since V dt is a function of ($, a, s), but Ṽ dt ($, a, s, q) ≡ V dt ($, a, s) if q is optimal.
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of the risky asset to the dealer at an average price pct per unit is given by:

Customer’s gain from trade = δc
(
Rct
(
��$
c
t + pctq

c
t

)
+ (��a

c
t − qct )V c

t

)︸ ︷︷ ︸
utility if trade

− δc
(
�

��Rct$
c
t +���actV

c
t

)︸ ︷︷ ︸
utility if no trade

(12)

= δcRctq
c
t

(
pct − Ṽ c

t

)
(13)

where Ṽ c
t ≡ V c

t /R
c
t . Note that the customer’s gain from trade doesn’t depend on his pre-trade holdings in either cash or the risky asset, because he is

risk-neutral.

For both the customer and dealer to have strictly positive gains from trade, we need pct and qct to exist such that:

qct Ṽ
c
t < qctp

c
t <

δqctEt

[
γaat+1

(
γat+1

γaat+1
+ 2adt + qct

)]
1 + δREt[γ

$
t+1]

(14)

The RHS is a negative quadratic in qct , with roots at qct = 0 and qct = −Et
[
γat+1

γaat+1
+ 2adt

]
, and whose slope at qct = 0 is

δEt[γat+1+2adt γ
aa
t+1]

1+δREt[γ
$
t+1]

. The LHS is

linear in qct , with positive slope Ṽ c
t , also with its root at qct = 0. Thus there are gains from trade as long as

δEt[γat+1+2adt γ
aa
t+1]

1+δREt[γ
$
t+1]

6= Ṽ c
t . Figure 6 shows the

regions where there are gains from trade, the equilibrium total price and quantity at which the dealer and customer will transact, and how the total

gain from trade is split between them, given their relative bargaining power. We now derive the price and quantity at which they trade.
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The bargaining game between the dealer and the customer

Let η ∈ [0, 1] and 1 − η be the relative bargaining powers of the customer and dealer, respectively. They bargain over both price and quantity to

maximize the Nash product:

max
pct ,q

c
t

{
δcRcqct

(
pct − Ṽ c

t

)η (
Et

[
δγat+1 + δ

(
2adt + qct

)
γaat+1−

(
1 + δRγ$

t+1

)
pct

])1−η
}

(15)

The first-order condition (FOC) wrt qct yields:

pct =
δEt

[
γat+1 +

(
2adt + (2− η)qct

)
γaat+1

]
1 + δREt[γ

$
t+1]

(16)

The FOC wrt pct yields:

⇒ pct = η

(
δEt

[
γat+1 +

(
2adt + qct

)
γaat+1

]
1 + δREt[γ

$
t+1]

)
+ (1− η)Ṽ c

t (17)

Notice that the customer-dealer price is a weighted average of the dealer’s and customer’s valuations, i.e. pct = ηV d
t + (1− η)Ṽ c

t , where V d
t is the price

when the dealer’s gain is zero. Combining the FOCs (16) and (17), yields the dealer’s position after she trades with a customer at time t:

ad,ct+1 ≡ a
d
t + qct =

(
1 + δREt[γ

$
t+1]

)
Ṽ c
t − δEt

[
γat+1

]
2δEt

[
γaat+1

] (18)

Notice that the dealer’s new position after trading with the customer does not depend on her inventory before.
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The dealer’s value function at time t, before she knows if she will trade with a customer, is given by:

V
d,cj
t

(
$dt , a

d
t , st

)
=

(
1−R−1 + δREt[γ

$
t+1]

)
︸ ︷︷ ︸

γ
$,cj
t

$dt +
((

1 + δREt[γ
$
t+1]

)
(1− ηj)V

cj
t + δηjEt[γ

a
t+1]

)
︸ ︷︷ ︸

γ
a,cj
t

adt (19)

+
(
δηjEt[γ

aa
t+1]−

(
1 + δREt[γ

$
t+1]

)
ft

)
︸ ︷︷ ︸

γ
aa,cj
t

(adt )
2 + Et

[
δγt+1 − a

d,cj
t+1

(
δηj

(
γat+1 + γaat+1a

d,cj
t+1

)
+ (1− ηj)

(
1 + δRγ$

t+1

)
V
cj
t

)]
︸ ︷︷ ︸

γ
cj
t

Appendix A.1.4 Periods of no trading

In periods when no dealer trades, neither with a customer, another dealer, or the issuer, she still gets paid interest, and pays the holding cost. Her

value function is given by:

V d
t ($dt , a

d
t , st) = (1−R−1 + δREdt [γ$

t ])︸ ︷︷ ︸
γ$t

$dt + δEt[γ
a
t+1]︸ ︷︷ ︸

γat

adt +
(
δEt[γ

aa
t+1]− ft

(
1 + δREt[γ

$
t+1]

))
︸ ︷︷ ︸

γaat

(adt )
2 + δEt[γt+1]︸ ︷︷ ︸

γt

(20)

Appendix A.2 Value function coefficient recursions

Appendix A.2.1 Maturity / reissuance

γ$
T = 1−R−1 + δRET

[
γ$
T+1

]
(21)

γaT =
(

1 + δRET

[
γ$
T+1

])
V issuer
T (22)

γaaT = −
(

1 + δRET

[
γ$
T+1

])
fT (23)

γT = δ
(
ET [γT+1]−

(
qissuer
T

)2
ET
[
γaaT+1

])
(24)
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Appendix A.2.2 Inter-dealer trade

γ$,i
t = 1−R−1 + δREt

[
γ$
t+1

]
(25)

γa,it =
(

1 + δREt

[
γ$
t+1

])
pit (26)

γaa,it = −
(

1 + δREt

[
γ$
t+1

])
ft (27)

γit = δ

(
Et [γt+1]−

(
adt+1

)2
Et
[
γaat+1

])
(28)

Appendix A.2.3 Customer-dealer trade

γ
$,cj
t = 1−R−1 + δREt

[
γ$
t+1

]
(29)

γ
a,cj
t = ηjδEt

[
γat+1

]
+
(

1 + δREt

[
γ$
t+1

])
(1− ηj)Ṽ

cj
t (30)

γ
aa,cj
t = δηjEt[γ

aa
t+1]−

(
1 + δREt

[
γ$
t+1

])
ft (31)

γ
cj
t = Et

[
δγt+1 − a

d,cj
t+1

(
δηj

(
γat+1 + γaat+1a

d,cj
t+1

)
+ (1− ηj)

(
1 + δRγ$

t+1

)
Ṽ
cj
t

)]
(32)

Appendix A.2.4 No trading

γ$
t = 1−R−1 + δREt[γ

$
t+1] (33)

γat = δEt[γ
a
t+1] (34)

γaat = δEt[γ
aa
t+1]− ft

(
1 + δREt[γ

$
t+1]

)
(35)

γt = δEt[γt+1] (36)
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Appendix A.2.5 Uncertainty about trade type

V d
t ($dt , a

d
t , st) = πiV

d,i
t +

∑
j

πcjV
d,cj
t + (1− πi − πc)V d

t (37)

=
(

1−R−1 + δREt

[
γ$
t+1

])
︸ ︷︷ ︸

=γ$t

$dt +

(1 + δREt

[
γ$
t+1

])πipit +
∑
j

πcj(1− ηj)V
cj
t

+

1− πi − πc +
∑
j

πcjηj

 δEt
[
γat+1

]
︸ ︷︷ ︸

=γat

adt

+

−(1 + δREt

[
γ$
t+1

])
ft + δ

1− πi − πc +
∑
j

πjηj

Et[γ
aa
t+1]


︸ ︷︷ ︸

=γaat

(adt )
2 + πiγ

i
t +

∑
j

πcjγ
cj
t + (1− πi − πc)γt︸ ︷︷ ︸

=γt

(38)

Appendix A.2.6 Value function coefficient recursions

γ$
t = 1−R−1 + δREt

[
γ$
t+1

]
(39)

⇒ γ$ =
1−R−1

1− δR
(40)
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if δR < 1. So γ$ is a constant.

γat =
(

1 + δRγ$
)πipit +

∑
j

πcj(1− ηj)V
cj
t

+ δ

1− πi − πc +
∑
j

πcjηj

Et
[
γat+1

]
(41)

= ...

=
(

1 + δRγ$
)T−t−1∑

u=0

δ
1− πi − πc +

∑
j

πcjηj

uπiEt[pit+u] +
∑
j

πcj(1− ηj)Et[Ṽ
cj
t+u]


+

δ
1− πi − πc +

∑
j

πcjηj

T−t

Et
[
V issuer
T

] (42)

which only depends on the state at time t.

γaat = −
(

1 + δRγ$
)
ft + δ

1− πi − πc +
∑
j

πcjηj

Et[γ
aa
t+1] (43)

= ...

= −
(

1 + δRγ$
) T−t∑
u=0

δ
1− πi − πc +

∑
j

πcjηj

u

Et[ft+u] (44)

which only depends on the state at time t.

38



Appendix A.3 Prices and quantities

Appendix A.3.1 Customer-dealer trade

The dealer’s post-trade inventory position, after buying qct units of the risky asset from a customer, is given by:

ad,ct+1 ≡ adt + qct (45)

=

(
1 + δREt[γ

$
t+1]

)
Ṽ c
t − δEt

[
γat+1

]
2δEt

[
γaat+1

] (46)

=
δEt

[∑T−t−2
u=0 (δ(1− πi − πc +

∑
j π

c
jηj))

u(πip
i
t+u+1 +

∑
j π

c
j(1− ηj)Ṽ

cj
t+u+1) + (δ(1− πi − πc +

∑
j π

c
jηj))

T−t−1V issuer
T

]
− V c

t

2δEt

[∑T−t−1
u=0

(
δ
(

1− πi − πc +
∑

j π
c
jηj

))u
ft+u+1

] (47)

The dealer’s new position after trading with the customer does not depend on her inventory before.

Appendix A.3.2 Economic decomposition of customer-dealer price

I showed earlier that customer-dealer price is a weighted average of the customer and dealer valuations, where the weights are given by their bargaining

powers. The dealer’s valuation is the price such that their gain from trade is zero. I now find a recursion for the dealer’s gain from trade which gives

intuition for the customer-dealer price. The gain from trade for a dealer with adt units of inventory of the risky asset from buying qct units at price per
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unit pct is:

gdt (adt , p
c
t , q

c
t ) = qctEt

[
δγat+1 + δ

(
2adt + qct

)
γaat+1 − (1 + δRγ$)pct

]
(48)

= (1 + δRγ$)

(
−pctqct +

δEt
[
γat+1 +

(
2adt + qct

)
γaat+1

]
qct

1 + δRγ$

)
(49)

= (1 + δRγ$)
(
−pctqct − δ

(
2adt + qct

)
qctEt[ft+1] + δπiEt[p

i
t+1]qct (50)

+δ


(1− πi − πc)Et

[
δEt+1

[
γat+2 +

(
2adt + qct

)
γaat+2

]
qct

1 + δRγ$

]
︸ ︷︷ ︸

=
gdt+1(a

d
t ,p

c
t ,q
c
t )

1+δRγ$
+pctq

c
t

+
∑
j

πcjEt

[
ηj

(
δEt+1

[
γat+2 +

(
2adt + qct

)
γaat+2

]
1 + δRγ$

)
+ (1− ηj)V

cj
t+1

]
︸ ︷︷ ︸

=p
cj
t+1(adt ,q

c
t )

qct




using the recursions for the γat and γaat . We get the recursion:

gdt

(
adt , p

c
t , q

c
t

)
= (1 + δRγ$)

−pctqct − δ (2adt + qct

)
qctEt[ft+1] + δπiEt[p

i
t+1]qct + δ

(1− πi − πc)pctqct +
∑
j

πcjEt

[
p
cj
t+1(adt , q

c
t )
]
qct


+δ(1− πi − πc)Et[gdt+1(adt , p

c
t , q

c
t )] (51)

Iterating:

gdt

(
adt , p

c
t , q

c
t

)
= (1 + δRγ$)qct

T−t−2∑
u=0

(δ(1− πi − πc))u
(
−pct − δ

(
2adt + qct

)
Et[ft+u+1] + δπiEt[p

i
t+u+1] + δ((1− πi − πc)pct (52)

+
∑
j

πcjEt

[
p
cj
t+u+1(adt , q

c
t )
]
)

+ (δ(1− πi − πc))T−t−1Et[g
d
T−1(adt , q

c
t , p

c
t)]
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Using the boundary condition from the last trade before the bond matures:

gdT−1(adt , q
c
t , p

c
t) = (1 + δRγ$)

(
−pctqct + δET−1[V issuer

T ]qct − δET−1[fT ](2adt + qct )q
c
t

)
(53)

we get

gdt

(
adt , p

c
t , q

c
t

)
= (1 + δRγ$)qct

(
−pct − δ

(
2adt + qct

) T−t−1∑
u=0

(δ(1− πi − πc))uEt[ft+u+1] (54)

+δ
T−t−2∑
u=0

(δ(1− πi − πc))u
πiEt[pit+u+1] +

∑
j

πcjEt

[
p
cj
t+u+1(adt , q

c
t )
]+ (δ(1− πi − πc))T−t−1 δEt

[
V issuer
T

]
From earlier, we know we can write pct

(
adt , q

c
t

)
=
(
2adt + qct

)
xt + yt, where xt and yt do not depend on adt or qct . Let qct denote the optimal quantity the

dealer would buy if she met a customer at time t. Let qct+u+1 be the optimal quantity the dealer would buy if she met a customer at time t + u + 1,

assuming her last trade was buying qt at time t. Then we can write:

qct × p
cj
t+u+1

(
adt , q

c
t

)
= −qct+u+1 × p

cj
t+u+1

(
adt + qct , q

c
t+u+1

)
︸ ︷︷ ︸

trade at t and t+ u+ 1

−
(
−
(
qct + qct+u+1

)
× pcjt+u+1

(
adt , q

c
t + qct+u+1

))
︸ ︷︷ ︸

trade at t+ u+ 1 only

(55)

which is the cash gain from trade at time t+ u+ 1, if dealer had traded at time t. Let qit+u+1, and qissuer
T denote the optimal quantity the dealer would

buy if she meets a dealer or customer at time t + u + 1, or issuer at time T respectively, assuming her last trade was buying qct at time t. If a dealer
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has inventory adt , then her gain from trade, gdt
(
adt , p

c
t , q

c
t

)
, from buying qct units at price per unit pct(a

d
t , q

c
t ), is:

−pctqct︸ ︷︷ ︸
buy qct units from time-t customer

−δ

(adt+q
c
t )

2−(ad)2︷ ︸︸ ︷(
2adt + qct

)
qct

T−t−1∑
u=0

(δ(1 − πi − πc))
uEt[ft+u+1]︸ ︷︷ ︸

discounted costs on (adt + qct ) units instead of adt , until next expected trade

+δ

T−t−2∑
u=0

(δ(1 − πi − πc))
u

πiEt[pit+u+1]
(
����−qit+u+1 − (−(���qit+u+1 + qct ))

)
+
∑
j

πcjEt

−qcjt+u+1.p
cj
t+u+1

(
adt + qct , q

cj
t+u+1

)
︸ ︷︷ ︸

trade at t and t + u + 1

−
(
−
(
qct + q

cj
t+u+1

)
.pct+u+1

(
adt , q

c
t + q

cj
t+u+1

))
︸ ︷︷ ︸

trade at t + u + 1 only




︸ ︷︷ ︸
buy qt+u+1 units from time-(t + u + 1) counterparty, instead of qt+u+1 + qct . The counterparty is a dealer with probability πi, and customer j with probability πcj .

+ (δ(1 − πi − πc))
T−t−1 δ

(
��a
d
t + qct − ((��a

d
t ))
)
Et
[
V issuer
T

]
︸ ︷︷ ︸

cash in adt + qct units instead of adt from issuer at time T , if dealer doesn’t

meet a counterparty in the previous T − t− 1 rounds of trading

(56)

all multiplied by (1 + δRγ$). I showed earlier that the customer-dealer price can be expressed as a weighted average of the dealer’s and customer’s

valuations, where the weights are given by their relative bargaining power. The dealer’s valuation can be characterized as the customer-dealer price
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such that the dealer’s gain from trade at time t is zero. The customer-dealer price per unit can thus be written recursively:

pct = η

 −δ
(

2adt + qct

) T−t−1∑
u=0

(δ(1− πi − πc))uEt[ft+u+1]︸ ︷︷ ︸
inventory costs on (ad + qc) units instead of ad, until next trade

+δ
T−t−2∑
u=0

(δ(1− πi − πc))u

πiEt[pit+u+1] +
∑
j

πcjEt

−qcjt+u+1.p
cj
t+u+1

(
adt + qct , q

cj
t+u+1

)
︸ ︷︷ ︸

trade at t and t+ u+ 1

−
(
−
(
qct + q

cj
t+u+1

)
.pct+u+1

(
adt , q

c
t + q

cj
t+u+1

))
︸ ︷︷ ︸

trade at t+ u+ 1 only

 /qct


︸ ︷︷ ︸
buy qt+u+1 units from time-(t+ u+ 1) counterparty, instead of qt+u+1 + qct . The counterparty is a dealer with

probability πi, and customer j with probability πcj

+ (δ(1− πi − πc))T−t−1 δEt
[
V issuer
T

]︸ ︷︷ ︸
cash in adt + qct units instead of adt from issuer at time T , if

dealer doesn’t meet a counterparty in the previous T − t− 1

rounds of trading


+(1− η)Ṽ c

t (57)
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Appendix A.3.3 Inter-dealer trade

Using equations (6), (42), and (44), the dealer’s post-trade inventory position, after buying qit units of the risky asset from the inter-dealer market, is

given by:

ad,it+1 =
δEdt

[∑T−t−2
u=0 (δ(1− πi − πc +

∑
j π

c
jηj))

u(πip
i
t+u+1 +

∑
j π

c
j(1− ηj)V

cj
t+u+1) + (δ(1− πi − πc +

∑
j π

c
jηj))

T−t−1V issuer
T

]
− pit

2δEdt

[∑T−t−1
u=0 (δ(1− πi − πc +

∑
j π

c
jηj))

uft+u+1

] (58)

Market-clearing in the inter-dealer market states that net trading must be zero. Let aDt denote the aggregate inventory of dealers who trade in the

inter-dealer market at time t. Each dealer will hold the same inventory after trading, as they have identical preferences. πi/π̃i is the proportion of

dealers trading in the inter-dealer market.

ad,it+1 =
aDt
πi/π̃i

(59)

This gives a recursion for the inter-dealer price, which can be solved by backwards induction from the trade before the maturity of the asset.

pit = δEt

T−t−2∑
u=0

δ
1− πi − πc +

∑
j

πcjηj

uπipit+u+1 +
∑
j

πcj(1− ηj)V
cj
t+u+1

+

δ
1− πi − πc +

∑
j

πcjηj

T−t−1

V issuer
T


−2δaDt
πi/π̃i

Et

T−t−1∑
u=0

δ
1− πi − πc +

∑
j

πcjηj

u

ft+u+1

 (60)
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Appendix A.3.4 Economic decomposition of inter-dealer price

Using equations (6), (41), and (43), the inter-dealer price can be written as:

pit = −2δād,it Et[ft+1] + δπiEt[p
i
t+1] + δ(1− πi − πc)

Et[pit+1]︷ ︸︸ ︷
2δād,it Et[γ

aa
t+2] + δEt[γ

a
t+2]

1 + δRγ$
+δ
∑
j

πcj



p
cj
t+1(ad,it ,qit)+

ηjδq
i
tEt[γ

aa
t+2]

1+δRγ$︷ ︸︸ ︷
ηjδEt[2ā

d,i
t γ

aa
t+2] + γat+2

1 + δRγ$
+ (1− ηj)V

cj
t+1


(61)

= δ
T−t−2∑
u=0

(δ(1− πi − πc))uEt

−2ād,it ft+u+1 + πip
i
t+u+1 +

∑
j

πcj

(
p
cj
t+u+1(ad,it , q

i
t) +

ηjδq
i
t+u+1γ

aa
t+2

1 + δRγ$

)
+(δ(1− πi − πc))T−t−1piT−1

]
(62)

by iterating forward. Making the following substitutions:

• pcjt+u+1(adt , q
i
t) +

ηjδq
i
tEt[γ

aa
t+1]

1+δRγ$
= ∂

∂qit

[
qitp

cj
t+u+1(adt , q

i
t)
]

• qitp
cj
t+u+1

(
adt , q

i
t

)
= −qit+u+1 × p

cj
t+u+1

(
adt + qit, q

i
t+u+1

)
︸ ︷︷ ︸

trade at t and t+ u+ 1

−
(
−
(
qit + qit+u+1

)
× pcjt+u+1

(
adt , q

i
t + qit+u+1

))
︸ ︷︷ ︸

trade at t+ u+ 1 only

• piT−1 =
δET−1[V issuer

T ]−2ād,iT ET−1[fT ]

1+δRγ$
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this can be written further as:

pit(ā
d,i
t ) =

∂

∂qit

−δ(ād,it )2
T−t−1∑
u=0

(δ(1− πi − πc))uEt[ft+u+1]︸ ︷︷ ︸
discounted inventory costs until next expected trade

+

T−t−2∑
u=0

(δ(1− πi − πc))u(πiEt[p
i
t+u+1]((qit+u+1 + qit)− qit+u+1) +

∑
j

πcj((q
i
t + qct+u+1).p

cj
t+u+1(ad,it , qit + qct+u+1)− qct+u+1.p

cj
t+u+1(ad,it + qit, q

c
t+u+1)))︸ ︷︷ ︸

sell qt+u+1 units instead of qt+u+1 + qit at next trade. Next counterparty is dealer with probability πi and customer j with probability πcj .

+ (δ(1− πi − πc))T−t−1Et
[
V issuer
T

] ((
adt + qit

)
− adt

)]︸ ︷︷ ︸
cash in adt units instead of adt + qit from issuer at time T , if dealer doesn’t

meet a counterparty in the previous T − t− 1 rounds of trading

(63)

Appendix A.3.5 Issuance

The dealer’s inventory position after maturity of one risky asset, and issuance of a new one, is given by:

adT1+1 = qissuer
T1

=

pissuer
T1

(
1 + δRET [γ$

T+1]
)
− δET

[
γaT+1

]
2δET

[
γaaT+1

] = (64)

δET1

[∑T2−T1−2
u=0 (δ(1− πi − πc +

∑
j π

c
jηj))

u(πip
i
T1+u+1 +

∑
j π

c
j(1− ηj)Ṽ

cj
T1+u+1) + (δ(1− πi − πc +

∑
j π

c
jηj))

T2−T1−1V issuer
T2

]
− pissuer

T1

2δET1

[∑T2−T1−1
u=0

(
δ
(

1− πi − πc +
∑

j π
c
jηj

))u
fT1+u+1

] (65)
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Appendix A.4 Markup

From equation (17) the customer-dealer price is given by:

pct = η

(
δEt[γ

a
t+1] + δ(2ad,ct + qct )Et[γ

aa
t+1]

1 + δRγ$

)
+ (1− η)Ṽ c

t (66)

= Ṽ c
t −

ηδqctEt[γ
aa
t+1]

1 + δRγ$
(67)

using equation (18), which becomes:

pct = Ṽ c
t − ηδqct

T−t∑
u=0

δ
1− πi − πc +

∑
j

πcjηj

u

Et[ft+u] (68)

using equation (44).

From equation (6) the inter-dealer price is:

pit =
δEdt

[
γat+1

]
+ 2δ(ad,it + qit)E

d
t

[
γaat+1

]
1 + δRγ$

(69)

= Ṽ c
t +

2δ((ad,it + qit)− (ad,ct + qct ))E
d
t

[
γaat+1

]
1 + δRγ$

(70)

using equation (18).
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The markup when the dealer is selling to the customer is thus given by:

pct − pit =

(
��̃V
c
t −

ηδqctEt[γ
aa
t+1]

1 + δRγ$

)
−

(
��̃V
c
t +

2δ((ad,it + qit)− (ad,ct + qct ))E
d
t

[
γaat+1

]
1 + δRγ$

)
(71)

= δ

ηqct − 2

 (ad,ct + qct )︸ ︷︷ ︸
dealer’s post-trade

inventory

− (ad,it + qit)︸ ︷︷ ︸
dealers’ mean inventory

in inter-dealer market




T−t−1∑
u=0

δ
1− πi −

∑
j

πcj(1− ηj)

u

Et[ft+u+1] (72)
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Figure 1: Aggregate US corporate securities holdings by primary dealers. This figure shows the time series of aggregate US
corporate securities inventory held by primary government bond dealers, measured in market value, estimated par value, and an upper
bound for % par of the corporate bond market. There is a large decrease in inventory starting from October 2007, which coincided
with some dealing banks (Citi, Merrill Lynch, UBS) experiencing large asset write-downs. A second decrease in inventory began in June
2011, during the sovereign debt crisis. Data is from The Federal Reserve Bank of New York, which reports weekly holdings and trade
volume, aggregated across all primary government bond dealers and across not just corporate bonds, but other corporate securities,
which is why the par value is only estimated and the % par represents an upper bound. Table 1 of Randall (2015) lists the names of
primary government bond dealers, and the major dealers who trade on MarketAxess, an electronic auction market for corporate bonds.
There is a large overlap in the two lists, so it seems reasonable that the aggregate inventory of primary government bond dealers is likely
representative of the wider dealer market.
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Figure 2: Median markup over time. This plot shows the time series of the median “markup”, as a percentage of par, when the
dealer is buying from a customer (B, blue circle) and when selling to a customer (S, red cross). The markup is defined as the difference
between a customer-dealer (retail) price and the inter-dealer (wholesale) price. The bid-ask spread is the sum of the markup to buy and
the markup to sell. In the financial crisis of 2007-09, as dealers sought to reduce their inventory, they priced bonds low to encourage
customers to buy from them, and discourage them to sell to them. We see this effect by higher markups when dealers were buying, and
lower when they were selling.
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Figure 3: Mean trade size over time. This plot shows the time series of the mean trade size when the dealer is buying from a
customer (B, blue circle), when selling to a customer (S, green diagonal cross), and for interdealer trades (D, red upright cross). During
the financial crisis of 2007-09 average trade size decreased for all three categories of trade, and remained lower afterwards.
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Figure 4: Markup by trade size group. This figure shows the mean markup, as a percentage of par, split into four trade size buckets:
retail trades, which are classified in the previous empirical literature as having a par value of less than $100,000; odd lot trades with a
par value of at least $100,000 but less than $1 million; institutional trades of at least $1 million, which is a round lot in the US corporate
bond market, but less than $10 million; and trades of at least $10 million which I denote as mega.
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possible trade inter-dealer trade

trade with customer j

no trade

πcj

πi

1− πi −
∑

j π
c
j

Figure 5: Dealer time-line. πcj is the exogenous probability that each dealer trades with a customer
of type j at time t. πi is the exogenous probability that each dealer trades in the interdealer market
at time t. 1− πi −

∑
j π

c
j is therefore the exogenous probability that each dealer does not trade that

period. The probabilities of trade are independent across time. This cycle repeats until the risky
asset matures, at which point asset holders receive a payoff, and a new risky asset is issued.
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Figure 6: Nash bargaining in dealer-customer trade. The solid red and dashed blue lines represent the indifference curves for the
dealer and customer, respectively. The region below (above) the solid (dashed) line represents the region where the dealer (customer)
has a gain from trade. The intersection of these regions, where there are gains from trade to both dealer and customer, are shaded gray.
The dot is plotted at the coordinates of the optimal quantity and total price (quantity × price/unit). The length of the arrows represent
the gains from trade to the customer and dealer. Here the customer’s relative bargaining power, η is 1

3 .
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Figure 7: Coefficient on Cash in Dealers’ Value Function (γ$
t ). This figure shows the coefficient on the dealers’ current cash

position in their value function (γ$
t ). The solid line is that coefficient when dealers are finitely-lived, dying at the maturity of the bond,

and is deterministic but not constant over time. The dashed line is the coefficient when dealers are infinitely-lived, and is also the limit
of the coefficient in the finitely-lived case as time to dealer death tends to infinity. In this example, there are 1,000 units of calendar
time, representing dealers earn interest at 5% per year, and the discount factor, δ, is 0.99 per year.
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